Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis.
نویسندگان
چکیده
Mitochondria mediate both cell survival and death. The intrinsic apoptotic pathway is initiated by the permeabilization of the mitochondrial outer membrane to pro-apoptotic inter-membrane space (IMS) proteins. Many pathways cause the egress of IMS proteins. Of particular interest is the ability of ceramide to self-assemble into dynamic water-filled channels. The formation of ceramide channels is regulated extensively by Bcl-2 family proteins and dihydroceramide. Here, we show that the chain length of biologically active ceramides serves as an important regulatory factor. Ceramides are synthesized by a family of six mammalian ceramide synthases (CerS) each of which produces a subset of ceramides that differ in their fatty acyl chain length. Various ceramides permeabilize mitochondria differentially. Interestingly, the presence of very long chain ceramides reduces the potency of C16-mediated mitochondrial permeabilization indicating that the intercalation of the lipids in the dynamic channel has a destabilizing effect, reminiscent of dihydroceramide inhibition of ceramide channel formation (Stiban et al., 2006). Moreover, mitochondria isolated from cells overexpressing the ceramide synthase responsible for the production of C16-ceramide (CerS5) are permeabilized faster upon the exogenous addition of C16-ceramide whereas they are resistant to permeabilization with added C24-ceramide. On the other hand mitochondria isolated from CerS2-overexpressing cells show the opposite pattern, indicating that the product of CerS2 inhibits C16-channel formation ex vivo and vice versa. This interplay between different ceramide metabolic enzymes and their products adds a new dimension to the complexity of mitochondrial-mediated apoptosis, and emphasizes its role as a key regulatory step that commits cells to life or death.
منابع مشابه
BcR-induced apoptosis involves differential regulation of C16 and C24-ceramide formation and sphingolipid-dependent activation of the proteasome.
In this study, we describe an ordered formation of long- and very long-chain ceramide species in relation to the progression of B-cell receptor (BcR) triggering induced apoptosis. An early and caspase-independent increase in long-chain ceramide species, in which C(16)- ceramide predominated, was observed 6 h after BcR triggering. In contrast, very long-chain ceramide species were generated late...
متن کاملA shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells.
Sphingolipids, major lipid components of the eukaryotic plasma membrane, have a variety of physiological functions and have been associated with many diseases. They have also been implicated in apoptosis. Sphingolipids are heterogeneous in their acyl chain length, with long-chain (C16) and very long-chain (C24) sphingolipids being predominant in most mammalian tissues. We demonstrate that knock...
متن کاملRole of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide
Ceramide is a common precursor of sphingomyelin (SM) and glycosphingolipids (GSLs) in mammalian cells. Ceramide synthase 2 (CERS2), one of the six ceramide synthase isoforms, is responsible for the synthesis of very long chain fatty acid (C20-26 fatty acids) (VLC)-containing ceramides (VLC-Cer). It is known that the proportion of VLC species in GSLs is higher than that in SM. To address the mec...
متن کاملSphingosine, a product of ceramide hydrolysis, influences the formation of ceramide channels.
Ceramides are known to have a regulatory function in apoptosis, including the release of cytochrome c and other proapoptotic factors from the mitochondrial intermembrane space. Ceramides can form large, stable channels in the outer mitochondrial membrane, leading to the proposal that ceramide channels are the pathway through which these proteins are released. Here, we report that sphingosine, a...
متن کاملCeramide as a Mediator of Non-Alcoholic Fatty Liver Disease and Associated Atherosclerosis
Cardiovascular disease (CVD) is a serious comorbidity in nonalcoholic fatty liver disease (NAFLD). Since plasma ceramides are increased in NAFLD and sphingomyelin, a ceramide metabolite, is an independent risk factor for CVD, the role of ceramides in dyslipidemia was assessed using LDLR(-/-) mice, a diet-induced model of NAFLD and atherosclerosis. Mice were fed a standard or Western diet (WD), ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochimica et biophysica acta
دوره 1848 2 شماره
صفحات -
تاریخ انتشار 2015